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by simply giving the 1=0 member ^0 of the triplet a 
different mass than the I=\ members ft and /32. An 
additional symmetry-breaking interaction Lagrangian 
is also needed. Furthermore, in any model which has 
only one triplet it is difficult to understand why there 

I. INTRODUCTION 

ASYMPTOTIC fields play a central role in the 
axiomatic formulation of field theory given by 

Lehmann, Symanzik, and Zimmermann1 and in many 
discussions of the analyticity of the S matrix based on 
their work. The properties of asymptotic fields have 
been extensively examined by Zimmermann, Haag, 
Nishigima, and Ruelle.2 In order to provide an illustra­
tive example that displays the Heisenberg fields for 
large times, the infields and their interrelation, we ex­
amined a separable potential model in field theory.3 

Within the framework of this model it is shown that: 
(a) The limits implied in the formal definition of in­
fields2 exist only after taking their matrix elements. 
(b) When the interaction is attractive enough to pro­
duce bound states, the Heisenberg field of a particle of 
momentum k has two terms which oscillate respectively 
with frequencies co (k) and /xw(</x), as t —» ± oo. The first 
term has the usual particle interpretation and repro­
duces the scattering states, whereas the second term 
cannot be interpreted as a particle since its energy is 
below the continuum. The latter term consists of an in­
finite product of fields and vanishes throughout a sub-
space that is free of heavy mesons (the target), (c) The 
commutator of the in-fields of those particles which are 
well enough localized to have a finite interaction energy 
is an operator. 

* Work supported in part by the U. S. Atomic Energy Com­
mission. 
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Phys. Rev. 112, 669 (1958); K. Nishigima, ibid. I l l , 995 (1958); 
K. W. Brenig and R. Haag, Fortschr. Physik 7, 183 (1959); 
D. Ruelle, Helv. Phys. Acta 35, 17 (1962). 

3 For other models see, H. Ezawa, Ann. Phys. (N. Y.) 24, 46 
(1963); Y. Kato and N. Mugibayaski, Progr. Theoret. Phys. 
(Kyoto) 30, 103 (1963). 

should be nine approximately degenerate spin-1 meson 
multiplets while there exist only eight approximately 
degenerate pseudoscalar meson states. For this reason, 
it appears that the special model discussed in Sec. II 
is a more realistic one. 

II. SOLUTION OF THE EQUATIONS OF MOTION 

The Hamiltonian for a light boson that interacts via 
a separable potential with a static boson of mass M is 

H=H0+\<pl<pGlG, (1) 

where 

Ho=M<p*<p+ [dko>(k)a?(k)a(k), 

G=ff(k)a(k)dk, (2) 

C^,^]=l,«(ft)=0*a+*a)1/2. 

#t(&) and <pf are creation operators for a light boson of 
momentum k energy u(k) and a static boson of mass M, 
respectively. From Eqs. (1) and (2) 

[flr,flt(4)] = ft)(ft)at(ft)+X^t^/(A)Gt. (3) 

In terms of the quantities defined above, the Heisenberg 
fields are 

eiHt ^e~iHt= t ( / ) 

(4) 

G(0= f f(k)G(k,t)ik. 

Since <p^<p is a constant of the motion it follows from 
Eqs. (3) and (4) that 

~i(rf/rfOat(*,0 = w(*)at(fe,0+X^t^/(*)Gt(0 • (5) 

This is a linear equation in cft(kyi) that can be solved by 
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, f f(k)a?(k 
tfi(k,t)= tfMe^du (6) D(z)£(z)= / dk——— 

J J u(k)-i 
(14) 

taking its Fourier transform by setting (12), the solution of Eq. (13) is 

J{kW(k) 

in Eq. (5). This gives Combining this with Eq. (10) yields 

1 1 
#(*,«)= \<pi<pf(k)&(fo) /(ft) = ot(*)-X*»V/(*)—J—— 

+l(k)5(a>(k)-ca), (7) , f(k')aHk') 
x /dk ' \ . (15) 

where rj—»0+ following the substitution of Eq. (7) in J a)(k')—co(k)—ir] 
(6). Since 

/

This in conjunction with Eq. (8) gives &(k,u>) explicitly, 

&(*,o>)/(fc)dk-G+ (co), thUs the Heisenberg field. 
it follows from Eq. (7) that I I L I N~F I E L D F O R T H E L I G H T M E S 0 N S 

With the aid of the retarded Green's function, 

Z^(o>)5t(a>) = 0(o>-/i) [f(k)I(k)6(a(k)-a>)dk, (8) AB(/,co(ft)) = ^(0c*-c*)S 

with defined to satisfy 

D-(S>) = 1+\<P*V[ m d k • (9) (Wdt)+U(k))AB(t-fMk))=-W-n, 
J w(k)-o>+ir) 

and letting 
Substituting in Eq. (6) with (7) yields i(d/dt)ai(k,t)+o>(k)tf(k,t)^ji(k,t), 

, , s f+°° # ( « ) , N the in-field is 
l(k) = aHk)-\<p*<pf(k)l - da; (10) 

J_M u-o>(k)-ir) air?{k,t) = <j<{k>t) 
this combined with Eq. (8) gives f 

+ AR(t-f,U(k))j+(k,t)e~^-i'W. (16) 

D-(w)G^o>) = d(o}-A ff(k)tf(k)d(u(k)-o>)dk 

-\*>V (dkf(kY5(u{k)-o>) f — 

This expression differs from that in Ref. 2 by the indu­
ct (w')dw' i s i ° n °f the damping factor under the integral sign, 

. (11) which was necessary to yield a finite integral.4 The 
MJ—w (k) J second term integrated by parts yields 

Defining aiJ{k,i) =e expp(co(&)+«)0 
/(£)2dk 

Z?(2) = l+X<pt*>/ — - , xj exp^i(u(k)+iey2aHk/)dt'. (17) 

+ , ( 1 2 ) 

'•+00 du 

7 co(*)-z x ; 
(12) J-* 

£(2)= / G+(co), By using Eq. (6) in (17), it follows that 
J _ o o CO — Z 

(18) and indicating the limits of these functions from above diJ(k,t) — -^ie I do) -e%<at, 
and below the real axis as D±(cS), <£(co), it follows from , ^ o>—o>(k)—ie 
Eq. (11) that a n d 

d 

= 2irie(a-n)J dkf(k)tf(k)8(u(k)-a>). (13) M a k i n g u s e o f E q > ( ? ) i n ( l g ) a n d a l s o u s i n g ( 1 Q ) a n d 

4 G. Kallen, Brandeis Summer Institute Lectures in Theoretical 
Since Z>(s--»oo) = l , £ (2—>oo)= — ( l / z ) G t , from Eq . P^Ww (W. A. Benjamin Inc., New York, 1962), Vol. 1, p. 163. 
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(12) will give 
1 

and since i/D(z) analytic except for cuts and poles 

X 
f(k>W(k') 

1 

/dk ' 
J «(*')-« ( J ' ) -»( i ) -»f 

U9) 

Z>(Z) 

where 

^ ( p / C - = l - X * > V / d k -
/W2 1 

P(«) , (24) 

(25) 

I t is readily verified that aijj(k)<p^\0) is identical with 
the incoming scattering state that results from the inter­
action of a light boson of momentum k with a heavy 
boson, ^ t |0 ) . I t is perhaps of interest to note that the 
limit €—»0, in Eq. (19), cannot be performed in any 
simple way: for example, the usual interpretation of the 
denominator in terms of a principal value and a 5-func-
tion is not possible because the tf(k)'s are linearly 
independent and hence the usual cancellations that must 
occur in order that a principal value integral may be 
finite will not take place. When the matrix element of 
a\J(k) is evaluated, tf(k') is replaced by a c-number 
function which may give results independent of e. Of 
course these remarks do not apply to D+. 

Using Eqs. (1), (2), and (19), it follows that 

[ a i n ( £ W (&')]= « ( * - * ' ) , 
[F,fl i l lt(A)] = a>(ft)aint(ft)+ie(aint(ft)-at(A)). (20) 

Since e<<Cju it follows that dirJ(k) is the creation operator 
for an incoming scattering state of energy almost equal 
toco(&).4a 

For the purpose of expressing the Hamiltonian in 
terms of the in-fields an analytic representation of 
1/D(z) will now be derived. Since D(z) is an R function 
it can have zeros on the real axis below fx for \ < 0 . Since 
<p1<p has integral values D(z) can be expressed as 

flW=EPJ)«W, 
n 

where Pn is the n heavy meson projection operator and 

/(&)2dk 

>(k)-z' 

Letting yn be the zero of Dn(z), 

Dn(ixn) = 0, (22) 

it follows that for z —> fxn 

D+(a>)\2co(k)-z 

P(z) = ZLrn/(z-fXn)']Pn^ 

Using Eqs. (19), (24), and (25), it follows that 

[dka>(k)aiJ(k)ain(k)= f<a(k)a^(k)a(k)Sk 

(26) 
n 

where terms proportional to e have been omitted and 

/(ft)at(fe) 

' • ' - / • 

Combining this result with Eq. (1) it follows that 

(27) 

H=M<p*<p+ J dka>(k)aiJ(k)ain(k) 

(28) 

As will now be shown, PnAJ is a creation operator for a 
light boson bound to n heavy bosons. From Eqs. (19) 
and (27) it follows that 

[flin(*),P»i4»t] = [am(*),i>
w4»] = 0. 

Note that 

ZAn,A 
J (o 

/(*)» 

r Hk)*6k 
Dn(z) = l+\n 

J w(J50-2 
(21) 

whereas from Eqs. (21) and (23) it follows that 

/W2dk 1 

/ («(&) — Hn)2 \nrn 

thus combining Eqs. (28)-(31), 

(29) 

(30) 

(31) 

(32) 
1 r„ 

> -Pn. 
D(z) Z — fXn 

From Eq. (12), for w>n, 

1 1 — 2wiK(p^<p 

(23) I t is clear that PnAJ is different from zero in the sub-
space of ^-heavy bosons only. With the aid of Eqs. (19), 
(24), and (27), it is readily shown that 

£>+(co) £>~(co) |£>+(co)|2 / 
/(&)25(co(£)-o/)dk, 

4a In obtaining the commutation of Eq. (20) we have assumed 
that diJ(k) is independent of e, thus it is only true for smoothed 
fields. 

<? = / dk £ AjrnPn. (S3) 

By comparison of Eqs. (4) and (17) it follows that 

^""oiJWe-w^aiJfat), 
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and combining this with Eqs. (32) and (33) it gives 

G*(t) = eiH'G*e-iHt 

a\J(k,t) 
= / dk £ e+^AjrnPn. (34) 

• / ' D~(o)(k)) » 

This result will be useful in constructing the in-held 
for <pt. 

IV. TRANSFORMATION FROM FREE TO IN-FIELDS 

In this section the transformation from the free to 
the in-fields will be further examined since it turns out 
to be useful in constructing the in-fields for the heavy 
bosons in the next section. 

Let 
aint(A) = flt(A')(l+a)ib^, (35) 

where repeated indices imply integration, this by com­
parison with Eq. (19) gives 

ak>k=—\<Pt<p_. — — . (36) 

Note that 
Z7f(«(ft))(w(ft')-«(*)-*«) 

ffin(&)= ( l + a t ) * * ' 0 ^ ' ) • 

From the commutation relations of the in-fields and 
Eq. (36) it follows that 

( l + « t ) ( l + a ) = l , 

[ ( l + a X l + a t ) ] * * , = * ( * ' - * " ) 

f(k')f(k")rnPn 

(37) 

—A^VS 
(«(* , ) -M»)(«(*")-M») ' 

thus (1+a) is an isometric matrix when the system has 
bound states.5 This is closely related to the correspond­
ing property of the Miller matrix. 

I t will now be shown that the transformation which 
leads from a^(k) to a-x^(k) is not unitary when bound 
states are present. Let us first construct an operator U 
such that 

*7at(jfe) = aint(jfe)[7, (38) 
which gives 

[17,at(A)] = at(ft/)ajb'*P (39) 

after using Eq. (35); U and W are found by inspection 
to be 

tf=l+at(&0a(&'^ 
X a ( n ^ " ^ ^ " " + ' " J (40) 

W=l+aKk0a(k,/)(a^)krk^+(l/2^(k,)a^(kf/) 

Xo(k'")a{k"")(<*W„(at)„,„,„+. • •. 

From this it follows that 

[tf t,flt (ft)] = at (*') (a%'kW. (41) 

5 E. C. G. Sudarshan, Brandeis Summer Institute Lectures in 
Theoretical Physics (W. A. Benjamin Inc., New York, 1961), Vol. 
2, p. 204. 

From Eqs. (37), (39), and (41) it is found that 

[ W , a t ( £ ) > 0 , (42) 

thus6 

UW=1. 

By the same procedure it follows that 

(43) 

[£/tfVt(£)]=-A^/(£)E. 
n < 

hence 

n 

o(k)—fin 

-PnUlP, 

2! 
* 2i-i -n-n s*-n <& n-n. wX n -L n (44) 

Thus, as stated above, U is not unitary and as will be 
made clear below Uffl projects out all bound states. In 
the absence of bound states (for example, A>0) 

which follows from Eq. (38). In general 

tf(k) = Waint(k)U. 

From Eqs. (35) and (41) it is found that 

Wa^(k) = a^(k)W, 

ain(k)U=Ua(k). 
(45) 

By taking the Hermitian conjugate of Eq. (41) and 
using (27) the following, to be used in the next section, 
are obtained 

U1=-UA nPn j 
consequently 

PnAnU=WAJPn=0. (46) 

V. IN-FIELD FOR HEAVY BOSON AND BOUND STATES 

In this section an in-field for the heavy boson is 
defined by analogy to Eq. (38); a more direct approach 
using Eq. (17) is left to the Appendix. Let 

a solution to this equation is7 

<PLJ=U<PW. (47) 

From Eq. (38) and (45) 

[a i nt(A),^ i nt] = [a i n (*) ,^ i n t ] = 0. (48) 

6 Additive terms to the right-hand side of Eq. (45) that depend 
on <p\a. are excluded by the observation that U^U(<p^)n\0) 
= (^)n0>, as follows from Eq. (40). 

7 From Eqs. (44) and (45), Ua^(k)U^ = UU^a-J{k)=a-J{k)UU^ 
7*a\iJ{k), whereas in a subspace that is free of bound states 
Z7at(jfe)j7t = afct^). 
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From Eqs. (2) and (43) 

[<£t<P,<Pint]=<?int, 

[<?in,^inT]=*7£/t. 

(49) 

(50) 

Thus one encounters operator valued commutators 
whose appearance in this model is directly traced to the 
presence of bound states. When the coupling constant is 
made less negative \in moves to the right and \rn de­
creases and Z7Z7t—> 1. In the absence of bound states 
WU= UW= 1. As consequence of Eqs. (28), (46), (48), 
and (49) 

[ff,*int] = i W W . (51) 

If instead of the Hamiltonian of Eq. (28) that of Eq. (1) 
was used then on the right-hand side of (51) terms 
proportional to e would also be present. 

Fields that create bound states will now be examined; 
let 

^ ( l J ^ i l i t P W (52) 
and note that 

C^(l),flint(A)] = [ ^ ( l ) , a i n ( * ) ] = 0 

as a consequence of Eqs. (29) and (48). From Eqs. (28), 
(30), and (31), it follows that 

[ F , ^ t ( l ) ] = ( M + M l ) ^ t ( l ) , (53) 

whereas from Eqs. (46), (47), and (52), 

[ ^ ( l ) , ^ i n ] - [ ^ ( l ) , ^ i n t ] = 0. (54) 

[<£>£(l),<£>i?t(l)] is again an operator since the first and 
second term of the commutator are different from zero 
in subspaces having different numbers of heavy bosons. 

I t is clear from Eq. (52) that 

^ t ( l ) ^ t ( l ) = 0. (55) 

This relation has a rather simple interpretation and will 
be discussed in the last section. 

In the same way the asymptotic field for a light 
boson bound to n heavy bosons is 

<pBKn) = AJPn(<PiJ)n (56) 

[fl>2jt(w)]= (nM+Hn)<pBi(n). 

From Eq. (46) and (56) it follows that 

<pB(n)UW=0, (57) 

this justifies the earlier statement that UU^ projects out 
all bound states. 

VI. ASYMPTOTIC LIMIT OF HEISENBERG FIELDS 

In this section the in-field will be compared with the 
/ —> — oo limit of Heisenberg fields. The Fourier trans­
form of the latter is already given in Eq. (7) where for 
0)>fX 

and 

«) = [ 
ZT(co) J 

#(«) = /(&)/(&)5(co(£)-co)dk, (58) 

after using Eq. (8). For CO</J combining Eqs. (12), (14), 
(24), and (27) 

&(<*)= (l/2irf)(£+(a))-£-(a>)) 

2iri J co (k) - co W (co) D~ (co) / 

- - / 

f(kW(k) 
dk 5Z rnPnS(co—n„) 

(59) 

0)(k)~ CO n 

n 

By comparison with Eq. (7) this gives 

{ J±n V'nJr n 

G*(a))eiwtdo) } 

+ 
r Cr' (co)e™ldo) 

i r +z(fey«<*>«. (60) 
J^ o)—o)(k) — ir]\ 

With the aid of Eq. (58) the second term in the paren­
thesis above is equal to 

f(k')i(k')dk' 
pioi{k') t 

l>-(u(k'))(u(k')-w(k)-iri) 
(61) 

If the numerator in the integrand is treated as a con­
tinuous function, then as t —> — <*> this integral can 
readily be shown to vanish.8 Since l(k') is not a con­
tinuous function, only matrix elements of the Heisen­
berg field lead to the disappearance of the second term 
of Eq. (60). Thus the remaining terms oscillate with 
discrete frequencies /xn and co(&). The last term of Eq. 
(60) is proportional to a^(k)in and asymptotically 
creates mesons of energy co(&). In the first term the 
PnS can be removed by expressing them as infinite 
products of <pi(p. This term is different from zero in a 
subspace containing at least one heavy boson and there 
acts as a creation operator [see Eq. (32)]. However, 
since jun<M it has no particle interpretation. Both of 
these terms can be obtained by a small modification of 
Eq. (17) which then may be taken as the definition of 
an eigenfield. Consider 

eei(E+ie)t I e-i(E 

J —oo 

(E+ieXVOM)*'- (62) 

This expression is an eigenvalue equation for that E that 
yields a finite result for (62) as e—>0. For E=w(k) it 
gives tf{k)ine

ioiW\ whereas for E=jjin, the substitution 
of Eqs. (7) and (59) into (62) yields 

X^cpfifyiAJrnPn/Zuik)-^"]}^^. 

The application of (62) to any eigenfunction of energy 

8 See H. Ezawa, Ref. 3, for instance. 
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shows formally, using Eq. (4), that it will result in a 
state whose energy is increased by E. For arbitrary E 
the norm of the resulting state is zero. Thus (62) defines 
an eigenfield for those values of E that make it nonzero. 
Therefore, it has been shown that as / —> — 00 tf(k,t) be­
comes a superposition of eigenfields. Those whose 
energies are larger than /x are the in-fields. 

The Heisenberg and in-fields for the heavy bosons are 
discussed in the Appendix. 

VII. DISCUSSION 

The in-fields given in previous sections can now be 
used to construct the full S matrix for channels with an 
arbitrary number of particles. As discussed above the 
implied limit in the definition of in-fields cannot be 
performed before taking their matrix elements. How­
ever, this is not of any consequence for obtaining the 
5 matrix. 

The eigenfields defined through Eq. (62) are a natural 
generalization of Eq. (17) which was used to obtain 
dirjik). From this point of view the large time behavior 
of the Heisenberg field a^(k,t) is determined by the 
superposition of two eigenfields with E=u(k) and [in, 
respectively. The latter term vanishes in the sub space 
free of heavy bosons. When there are bound states, the 
occurrence of eigenfields that vanish in a given sub space 
is expected in any static model. 

Some of the commutators of the in-held are opera­
tors. This was a very simple explanation which could 
have been anticipated. Any, creation of destruction, 
in-held heavy boson operator when applied to the sub-
space containing a bound state of energy EB must yield 
zero for otherwise the energy of this new state would be 
EB±M. However, in this model since all bound states 
and heavy bosons are localized they must have a non­
zero energy of interaction; thus to avoid a contradiction 
the statement above must be valid. I t should be noted 
by comparison with Eq. (50) that its right-hand side is 
zero in the subspace of bound states and equal to one 
elsewhere. In the rest of the Hilbert space that is free of 
bound states the application of <piJ gives a result differ­
ent from zero since in those states the light bosons are 
not well localized and the energy is additive. The 
explanation of Eq. (55) is the same; two bound states 
in the same place have a total energy that is not addi­
tive. If the right-hand side of Eq. (55) were different 
from zero one would reach a contradiction. Note that in 
this model two heavy bosons have additive energy since 
they have no meson cloud. The commutators of the 
bound-state fields are also operators. Thus the appear­
ance of operator commutation relations is model 
independent and is due to localizability. 
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APPENDIX 

Consider the expression 

c/yi7t:=vt 

which is equivalent to 

(Al) 

(A2) 

The purpose of the following development is to show 
that <pfj[=<Pin\ where cp^ is defined through Eq. (17). 
Using Eq. (51) the Heisenberg field at time t is 

where 
W(t) = eimWeriHt. 

(A3) 

(A4) 

In this Appendix the Hamiltonian of Eqs. (1) and (28) 
will be used interchangeably. From Eqs. (1), (28), 
and (40), 

[ / / ,f / t] = X G V V ^ t / f(k)ain(k)dk 

thus 

d 

dt J 

Letting W (0) = W the solution of the above equation is 

t\,J,r>V rt rt (i\<p^ cp): 

dl'dt"GKt')&(inW 

XGin(t')Gin(.i")+---, 
where 

G i n( /)= //(A)0 t a(fty-'»<*"dk. 

From Eq. (33) 

<?(/)= /dk-
a^O) 

D-(ca(k)) 

Using Eq. (38) in W(t) given above 

U\t)=\\+tKtfv I dl'G*(t')G0(t') 

e™m*-'£AJrnPne
i>"'t. (A5) 

( * W ) 2 rt rt 

2 ! j o J a 

[ dt'dt"GHt')GHl") 
Jo 

XG0(t')Go(t")+---}u\ (A6) 

where 

;„(<)= /dk/(fc)a (k)e~ •i(i)(k) t (A7) 



E X P L I C I T C O N S T R U C T I O N O F A S Y M P T O T I C F I E L D S B483 

After using (A5) and (A7) any term of (A6), except the 
first, is of the form 

Comparing (Al), (A3) with (A9) yields 

f G*(t')Q(t)Go(t')dtr 

expp (co (k) - co (&') )Q-1 

lim <pt(t)->U<p*W, 
t—» — oo 

(A10) 

in the sense of weak operator convergence. 
The construction of the in-field is greatly simplified by 

the following relation, 

X- dkdk' • / . 

0 J gixt' ^ e%yt' j[_ pizt' 

E AjrnPnQ(t)a(k')f(k') 
n 

exp[i(jin—a)(k'))f\— 1 

x y z 

1 1 1 

x—ley—lez—ie 
, (Al l ) 

X-
Hn — W(k') 

dk'V 

Using above the identity 

which is only valid in an integral sense over smooth 
functions. In applying (All) below to calculate the in­
field the smoothness of the rest of the integrand can be 
justified only after taking matrix elements. 

F romEq. (17), for ^==0 

lim P i -dx= — irig(0), a>0, 

J —oo 

- i ( J W 6 ) « ' / 9 t ( / / W . vw (A12) 

where g(x) is a smooth function, it follows that 

lim / G*(tf)Q(t)G0{t')dt' 

^i[ I lim Q{t) dkdk' 
\J D-(cc(k)) *—« co(fe)-«(ftO-ie 

+ Z rnAjPn lim Q(t)An) . (A8) 
n * - * - o o J 

This relation holds for matrix elements that replace 
a(kf) and aiJ{kf) by smooth functions. Using Eqs. (35) 
and (37) the above simplifies and gives 

this, after substitution from (A3), becomes 

"'WWip'WWd?. (A13) 

lim ihip* 
Jo 

)Q{t)G,{l')dt' 

Since every term of W(tr) and U{tf) is of the form 

(l-eixt')/x, 

it follows, from (All) and (A 12), that 

/

o i*o 

e't'Wit')^* e^"U(t")dt". (A14) 
-oo J —oo 

By comparison of (A6), (A8), (A9), and (Al l ) , 

lim m ( 0 = e / e'l'TP{t') = UlP, (A15) 

- (dHfi'W.v lim Q{t)a{k')Sk'Skh 

J ^ - ° ° 

in the sense of weak operator convergence. Combining 
(Al) and (A 15), we obtain 

Repeating this argument for U(t) given in (A6) 

lim W(t)=UW. 
t-^—oo 

Thus 

(A9) 

<PiJ= UW<p'WW= <p'i. Q.E.D. 

U<pW*=<piJ= lim <pi(t) 
«->—00 

under the restrictions stated above. 


